CSE 333
Section 8 EiRiES

Client-side Networking
& ex10-11 demo

-

LAYERS EVERYWHERE

makeameme .0rg

W UNIVERSITY of WASHINGTON

Logistics

e Homework 3:
o Due Tonight (2/23) @ 11:59pm
o Late day policy: can still submit until Sunday, even if you are out of late day
tokens (10% penalties applied in “friendly” manner)

e Exercise 10:

o Outtomorrow after lecture
o DueWednesday (3/1) @ 11:00am

e Exercise1l:
o OQOuttomorrow after lecture
o Due Friday (3/3) @ 11:00am

https://courses.cs.washington.edu/courses/cse333/23wi/syllabus.html#late

Interviewer: this role requires knowledge in the
7 layer internet model

Computer Networking
- At a High Level

Five XTAKE1I:0R LEAVEIT:

Computer Networks: A 7-ish Layer Cake

application application

presentation gpresentation

session session

transport transport
network network network
data link data link data link

physical physical physical

Computer Networks: A 7-ish Layer Cake

1581 —_— M

Wires, radio signals, fiber optics

bit encoding at signal level physical physical physical

Computer Networks: A 7-ish Layer Cake

00:1d:4f:47:0d:48 4c:44:1e:8f:12:0e 7a:37:8e:fc:1azea de:ad:be:ef:ca:fe 01:23:32:10:ab:ba

WiFi, ethernet.
Connecting multiple computers
LAN = u

ethernet

destination source

address address data

ethernet header ethernet payload

multiple computers on a local network data link data link data link

bit encoding at signal level physical physical physical

Computer Networks: A 7-ish Layer Cake

O . - - - /’-/Elestination
n >
source HB-----)
- router
IP header IP payload
destination source ‘ router
address address data 3
ethernet header ethernet payload

routing of packets across networks network network network
multiple computers on a local network data link data link data link

bit encoding at signal level physical physical physical

Computer Networks: A 7-ish Layer Cake
:email WWwW phone...;

\SMTP HTTP RTP...}

Backbone of

|
the Internet! ethernet PPP.)

{ CSMA async sonet...\

. I nte rn et" E copper fiber radio... !

routing of packets across networks network network network

multiple computers on a local network data link data link data link

bit encoding at signal level physical physical physical

Computer Networks: A 7-ish Layer Cake

__________ 1

sre, dst, | TCP ;{»ayload
i port
_________ ; TCP, UDP, etc.
+seq # / / \
hlfje, TCP chunk 1 h;cjer TCP chunk 2
1P P
header IP payload header IP payload
e;::ar:t ethernet payload e;Z:(rjr;t ethernet payload

sending data end-to-end transport transport
routing of packets across networks network network network

multiple computers on a local network data link data link data link

bit encoding at signal level physical physical physical

Computer Networks: A 7-ish Layer Cake

__________ 1

| sr;},?ft' | TCP ;{»ayload
/ = TCP, UDP, etc.
+seq # / \
hlfje, TCP chunk 1 h;cger TCP chunk 2
header IP payload header IP payload Stream abstraction!
el:t;::ir:a?t ethernet payload eﬁZZ;’;?t ethernet payload

sending data end-to-end transport transport
routing of packets across networks network network network

multiple computers on a local network data link data link data link

bit encoding at signal level physical physical physical

Computer Networks: A 7-ish Layer Cake

HTTP, DNS, anything else?

format/meaning of messages B=To]o]l[oF=}ilo)n application

presentation gpresentation

session session

sending data end-to-end AL plelgs transport
routing of packets across networks network network network

multiple computers on a local network data link data link data link

bit encoding at signal level physical physical physical

Data Flow

Transmit application

Data presentation
session

transport
network

data link

physical

network
data link

physical

application

gpresentation

session
transport
network
data link

physical

Receive
Data

12

Exercise 1

Exercise 1

(Application Layer)

e DNS:
(Network Layer
o |P:
(Transpo
o TCP:
(Transport Lay
e UDP:
(Applicati
e HTTP:

Reliable transport protocol on top of IP.
Translating between IP addresses and host names.
Sending websites and data over the Internet.
Unreliable transport protocol on top of IP.

Routing packets across the Internet.

14

TCP versus UDP

Transmission Control Protocol (TCP): User Datagram Protocol (UDP):
e Connection-oriented Service e “Connectionless” service
e Reliable and Ordered e Unreliable packet delivery
e Flow control e High speed, no feedback

TCP guarantees reliability for things like messaging or data transfers. UDP has less overhead
since it doesn’t make those guarantees, but is often fine for streaming applications (e.g.,
YouTube or Netflix) or other applications that manage packets on their own or do not want
occasional pauses for packet retransmission or recovery.

15

Client-Side Networking

Client-Side Networking in 5 Easy” Steps!

Figure out what IP address and port to talk to
Build a socket from the client
Connect to the server using the client socket and server socket

Read and/or write using the socket
Close the socket connection

o Wb

Remember these functionalities are from the C standard library,
though we are using them in our C++ programs
(but they’re coming to C++23 &)

*difficulty is subjective

17

Sockets (Berkeley Sockets)

e Just afile descriptor for network communication
o Defines alocal endpoint for network communication
o Built on various operating system calls

e Types of Sockets
o Stream sockets (TCP)

o Datagram sockets (UDP) A FILE IIESI}IIII"I'IIII

o There are other types, which we will not discuss

e Each socket is associated with a port number (uint16_t) and an IP address
o Remember to convert between host order and network order!
(https://www.gnu.org/software/libc/manual/html node/Byte-Order.html)
o ai_family will help you to determine what is stored for your socket!

18

https://www.gnu.org/software/libc/manual/html_node/Byte-Order.html

Understanding Socket Addresses

struct sockaddr (pointer to this struct is used as parameter type in system calls)

fam 22272

struct sockaddr_in (IPv4)

fam port addr zero

16
struct sockaddr_in6é (IPv6)
fam port flow addr
struct sockaddr_storage
fam 2277

scope

28

Big enough to hold either

19

Understanding struct sockaddrx*

e It’sjust a pointer. To use it, we’re going to have to dereference it and cast it
to the right type (Very strange C “inheritance”)
o Itisthe endpoint your connection refers to

e Converttoastruct sockaddr_storage
o Readthe sa_family to determine whether itis IPv4 or IPv6
o |Pv4: AF_INET (macro) > castto struct sockaddr_in
o |Pv6: AF_INET6 (macro)>casttostruct sockaddr_in6

20

Byte Ordering and Endianness

e Network Byte Order (Big Endian)
e Host byte order - Might be big or little endian, depending on the hardware
e To convert between orderings, we can use

uintle_t
// htons
uintle_t
// ntohs
uint32_t
// htonl
uint32_t
// ntohl

htons(uintl6_t hostshort);
-> host to network short
ntohs(uintl6_t netshort);
-> network to host short
htonl(uint32_t hostlong);
-> host to network long
ntohl(uint32_t netlong);
-> network to host long

21

Step 1: Figuring out the port and IP

e Performs a DNS Lookup for a hostname
e Use “hints” to specify constraints (struct addrinfox)

e Getbackalinkedlistof struct addrinfo results

Name of host whose IP we want

o

int getaddrinfo(const charx hostname, <— . .
const charx service, We will set thisto nullptr to

get the default; otherwise you

const struct addrinfox hints,))
can specify service/port

struct addrinfox* res); \

Output parameter; xres is Hints for the lookup server/refine results
set to the first resultin LL 2

Step 1. Obtaining your server's socket address

struct addrinfo {

int ai_flags; //
int ai_family; //
int ai_socktype; //
int ai_protocol; //
size_t ai_addrlen; //
struct sockaddr* ai_addr; //

char* ai_canonname; //
struct addrinfox ai_next; //

additional flags

AF_INET, AF_INET6, AF_UNSPEC
SOCK_STREAM, SOCK_DGRAM, 0
IPPROTO_TCP, IPPROTO_UDP, 0
length of socket addr 1in bytes
pointer to socket addr
canonical name

can have linked list of records

e ai_addr pointstoastruct sockaddr describing a socket address, can be IPv4 or IPv6

23

Steps 2 and 3: Building a Connection

2. Create a client socket to manage (returns an integer file descriptor, just like

POSIX open)
// returns file descriptor on success, -1 on failure (errno set)
int socket(int domain, // AF_INET, AF_INET6, etc.
int type, // SOCK_STREAM, SOCK_DGRAM, etc.
int protocol); // just put 0 (network abstraction)

3. Use that created client socket to connect to the server socket
// Connects to the server
// returns 0 on success, -1 on failure (errno set)

int connect(int sockfd, // socket file descriptor
struct sockaddr* serv_addr, // socket addr of server
/////’socklen_t addrlen) ; // size of serv_addr

Usually from getaddrinfo!

24

Steps 4 and 5: Using your Connection

// returns amount read, O for EOF, -1 on failure (errno set)
ssize_t read(int fd, voidx buf, size_t count);

// returns amount written, -1 on failure (errno set)
ssize_t write(int fd, voidx buf, size_t count);

// returns 0 for success, -1 on failure (errno set)
int close(int fd);

e Same POSIX methods we used for file |/O!
(so they require the same error checking...)

25

Helpful References

1. Figure out what IP address and port to talk to
* dnsresolve.cc

2. Build a socket from the client

e connect.cc

3. Connectto the server using the client socket and server socket
* sendreceive.cc

4. Read and/or write using the socket
* sendreceive.cc (same as above)

5. Close the socket connection

26

https://courses.cs.washington.edu/courses/cse333/23wi/lectures/19/code/dnsresolve.cc.html
https://courses.cs.washington.edu/courses/cse333/23wi/lectures/20/code/connect.cc.html
https://courses.cs.washington.edu/courses/cse333/23wi/lectures/20/code/sendreceive.cc.html

Exercise 2

specify lookup hints Dotted boxes should |
be filled in with the |
data type. |

@ (hostname, servname, ' ’)
R }
I -— OUtpUt param

l L

extract fields from result
(IPv4 vs IPv6)

‘ 1
@ (, type, protocol)

TODO: Fill in this chart with the steps
described in the slides on how to

@ ([A , addrlen) . . .
interact with a server as a client!
@ read(, buf, count)
write(, buf, count)

@ close(‘_)

int getaddrinfo(const charx hostname,
u const char* service
1- getaddrlnfO() const struct addr'im,co* hints,

struct addrinfo*x res);
e Performs a DNS Lookup for a hostname
e Use “hints” to specify constraints (struct addrinfox)

e Getbackalinkedlistof struct addrinfo results

specify lookup hints

1. getaddrinfo() - Interpreting Results

struct addrinfo {

s

int ai_flags; // additional flags

int ai_family; // AF_INET, AF_INET6, AF_UNSPEC

int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0

int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, ©

size_t ai_addrlen; // length of socket addr 1in bytes

struct sockaddrx ai_addr; // pointer to sockaddr for address
char* ai_canonname; // canonical name

struct addrinfox ai_next; // can form a linked list

N

*Note that we get a linked list of results

30

1.

getaddrinfo() - Interpreting Results

struct addrinfo {

s

int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
struct sockaddrx ai_addr; // pointer to socket addr

These records are dynamically allocated; you should pass the head of the linked list
to freeaddrinfo()
Thefield ai_family describesifitisIPv4 or IPv6

ai_addr pointstoa struct sockaddr describing the socket address

31

1. getaddrinfo() - Interpreting Results

Witha struct sockaddrx:
e Thefieldsa_family describesifitisIPv4orIPv6
e Castto struct sockaddr_in* (v4)or struct sockaddr_in6*x (v6)
to access/modify specific fields (i.e. ports)
e Storeresultsina struct sockaddr_storage to have a space big enough for

v i struct addrinfox |

extract fields from result
(IPv4 vs IPv6)

l 32

1.

getaddrinfo() - Interpreting Results

struct addrinfo {

s

int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
struct sockaddrx ai_addr; // pointer to socket addr

A struct sockaddr* canpointtoeithera struct sockaddr_inorastruct
sockaddr_in6

o What does this remind us of?
All of the struct sockaddr_* structs have a field called fami ly that lets us figure out
what kind of address it is at runtime
We can pass eithera struct sockaddr_inorastruct sockaddr_in6 tosystem calls
as needed

33

2. Build client side socket

int socket(int domain, // AF_INET, AF_INETG6

int type, // SOCK_STREAM (for TCP)
int protocol); // 0 for the default
This gives us an unbound socket that’s not connected to anywhere in particular

Returns a socket file descriptor (we can use it everywhere we can use any other file descriptor
as well as in socket specific system calls)

extract fields from result
(IPv4 vs IPv6)

@ socket(, type, protocol)

34

2. Build client side socket

Remember to cast to

extract fields from result
- sockaddr_storagex

(IPv4 vs IPv6)

g s e iy s e e i et g

 J e ——T——
@ socket (domain, type, protocol)

v
l @ () , addrlen)

35

3. connect()

int connect(int socket, // socket fd

const struct sockaddr *addr, // address to connect to
socklen_t addr_len); // length of xaddr

This takes our unbound socket and connects it to the host at addr
Returns 0 on success, -1 on error with errno set appropriately

After this call completes, we can actually use our socket for communication!

36

4. connect()

int connect(int socket,

const struct sockaddr xaddr,

socklen_t addr_len);

e Connects an available socket to a specified address

e Returns 0 on success, -1 on failure

extract fields from result
(IPv4 vs IPv6)

connect(sockfd, serv_addr, addrlen)

: struct
i sockaddr_storagex

37

int connect(int socket, // from 1
const struct sockaddr *addr, // from 2

3' conneCt() socklen_t addr_len); // size of serv_addr

e Connects an available socket to a specified address

e Returns 0 on success, -1 on failure

extract fields from result
(IPv4 vs IPv6)

lnfffmffftf?TE}X)_f — | i sockaddr_storagex |
<::> socket(domain, type, protocol)

E int (sockfd) f ____________________

_________________________ <------- Cast sockaddr_storagex* to sockaddrx*!

1 (::) connect(sockfd, serv_addr, addrlen)
38

4. read/write and 5. close

e Thanks to the file descriptor abstraction, use as normal!

e readfromandwrite toa buffer,the OS will take care of
sending/receiving data across the network

e Make sureto close the fd afterward

 /
read(sockfd, buf, count)

®

write(sockfd, buf, count)

y
<::> close(sockfd)

39

specify lookup hints

struct addrinfox* |

v
@ getaddrinfo(hostname, servname, hints, &res)

Dotted boxes should §
be filled in with the |
data type. i

v

extract fields from result
(IPv4 vs IPv6)

@ socket(domain, type, protocol)

int (sockfd)

v v
@ connect(sockfd, serv_addr, addrlen)

read(sogkfd , buf, count)

write(sockfd, buf, count)

v
@ close(sockfd)

,,,,,,,,,,,,,,,,,,,,,,,,,

struct
sockaddr_storagex*

40

Using Netcat for the first time

Netcat and
Ex10-11 demo

hetcat

e Command-line utility to setup a TCP/UDP connection to read/write data
o Man page: https://www.commandlinux.com/man-page/manl/nc.1.html

® To start aserver:
o nc -1 <hostname> <port>

e To connect to that server (as a client):
o nc <hostname> <port>

e <hostname> can be:
o localhost
o attu#.cs.washington.edu

https://www.commandlinux.com/man-page/man1/nc.1.html

Exercise Overviews and Demo

e Ex10: build a client that can send bytes to a server
o Send the contents of a file over the network
o Test with netcat server

e Ex11:build aserver that listens for incoming client connections
o Prints out the received data/file contents
o Test with Ex10 (your own or sample solution) or netcat client

e File comparison (need to make sure that input and output files match)
o Redirect server outputto output.bytes
o If both files on the same machine,use: diff -s filel file2
o Iffiles are on different machines, manually compare md5sum outputs

43

